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Leverage Cycles in the Household Sector 
Assessing the Early Warning Signs in Canada and the United States 

Anthony Bonen 
Abstract 

The leverage cycles of households in Canada and the United States are compared to the the optimal debt/net worth 
ratio prescribed by a stochastic optimal control (SOC) model. The SOC model employed extends Jerome Stein’s 
2003 optimal leverage metric by modeling speculative capitals gains as a geometric Brownian motion with a 
variable trend rate. The difference between the normalized observed and optimal leverage is an early warning sign 
(EWS) of financial fragility. We find that Canadian households are in a fragile state. Therefore, a negative shock 
to the Canadian real estate sector could ignite a crisis but this is unlikely to be as severe as the US housing market 
crash in 2008/09. 

 

I. Introduction 

In spite of its extensive economic ties with the United States, the Canadian economy weathered 
the 2008 financial crisis better than any other G7 country (IMF, 2013). In particular, the 
resilience of Canadian credit markets has – to date – been impressive. However, there is 
increasing concern about the sustainability of Canada’s housing price bonanza (The Globe 
and Mail, 2013; The Economist, 2013a, 2013b; Financial Times, 2014). Housing price gains in 
Canada’s largest real estate markets have developed in tandem with a rapid build up of 
household debt – reaching 164% of disposable income in the third quarter of 2013 (see Fig. 
1), on par with the levels seen in the US in 2006 and 2007. Is this level of household debt 
sustainable? Does the increase in Canadian households’ assets justify higher debt-to-net worth 
ratios? We apply and extend Jerome Stein’s model of optimal leverage to answer in the negative. 
Since the collapse of Bear Stearns in March 2008, Canadian household leverage has remained 
precariously above our measure of optimal leverage. Indeed, since mid-2011 the difference 
between observed and optimal leverage has been greater than 2 standard deviations above the 
sample mean, and growing. One way or another the gap between households’ actual and 
optimal leverage ratio will close. 

The stochastic optimal control (SOC) model developed in section 3 allows for direct 
comparison of the optimal and actual household leverage. A positive difference between these 
two figures is an ‘early warning sign’ (EWS) indicating financial fragility and the potential 
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for a crisis. Section 4 applies this model retrospectively to the 2007/08 US real estate boom-
bust cycle and to the current Canadian market. 

We find that the Canadian household sector has had a significant early warning sign since 2009 
(through 2013 Q4), indicating a high degree of financial fragility. Looking beyond this 
important conclusion we explore the role of bank lending (or, rather, its sudden stop) in 
igniting the US household sector’s debt crisis. Section 6 reviews the findings and suggests 
avenues for future research. 

Figure 1: Ratio of Canadian Households’ Debt to Disposable Income 

 

Source: Quarterly data. Ratio of total household sector stock of debt to total gross disposable income. Statistics 
Canada, National Economic Accounts (NEA), tables 378-0121 and 378-0037. 

II. Manias Metrics and Balances 

During the ‘Great Moderation’, from the mid-1980s to the mid-2000s, monetary policy was 
thought to have effectively insulated the real economy from the occasional financial boom-
bust cycle. It was not until the full scale of the financial crisis emerged in autumn 2008 that 
most economists began to heed Minsky’s (1993, p. 6) plea to “take banking seriously as a 
profit-seeking activity.” Although we do not here present a formal Minskyan model, we follow 
an emerging macro-financial literature that, at its core, looks to Hyman Minsky’s Financial 
Instability Hypothesis (FIH) as a motivational framework. Of course, Minsky’s analysis was 
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not restricted to formally incorporated ‘banks’; rather the term is shorthand for financial 
investment units, a category which includes shadow banking, financial arms of non-financial 
firms and so on (Minsky, 2008[1986]). The present model considers households as profit-
seeking investment units that are able to obtain credit lines (primarily, mortgages) with which 
to invest (primarily in real estate). Further, the model incorporates two other key Minskyan 
insights: (i) that risk builds up during expansionary phases, and; (ii) financial market 
participants act on capital gains signals, even if they cannot be related to “fundamentals”. 

There is a large body of literature focusing on the nature of financial boom-bust cycles (e.g., 
Stiglitz, 1990; Fama, 1998; Geanakoplos, 1997; LeRoy, 2004; Semmler & Mittnik, 2013). Earlier 
attempts to model the patterns within standard macro- economic frameworks have been unable 
to capture the observed dynamics in financial markets (e.g., Kiyotaki & Moore, 1997; 
Holmström & Tirole, 1997; Bernanke, Gertler, & Gilchrist, 1999). This has led to the rise of non-
standard approaches including agent-based models (e.g., Gallegati, Palestrini, & Rosser, 2011; 
Theobald, 2012) and stochastic equilibria models (e.g., He & Krishnamurthy, 2008; Semmler & 
Bernard, 2012; Brunnermeier & Sannikov, 2014). Yet, in virtually all cases, the object of study is 
the active financial participant, such as banks and hedge funds. To the extent that the household 
sector is included, it tends to be a passive supplier of credit to financial experts. Jerome Stein’s 
optimal leverage model is an exception to this rule as it can – with appropriate adjustments – be 
applied to the asset returns and balance sheet position of any market sector or group (see, Stein, 
2003; Fleming & Stein, 2004; Stein, 2006, 2011, 2012). This flexibility stems from Stein’s goal of 
estimating a sector’s optimal leverage based on total asset returns and debt servicing costs. That 
is, the objective of the Stein model is not to simulate leveraging behavior over the credit cycle, 
but to determine the sustainability of observed leverage. 

IIA. Stein’s Early Warning Sign for Crises 

Clearly, households’ adjust their portfolio far less frequently than financial firms. Nevertheless, 
the household sector has been an active participant in financial cycles. For example, during the 
recent housing price boom in the United States, household leverage (= debt/net worth) followed 
a procyclical pattern, jumping from an average of 16% in the 1990s to 20% in the early 2000s – 
well above historical norms (see Fig. 2). As the housing crisis took hold, the sector’s leverage 
peaked at over 25% in early 2009. This implies a passive management of portfolios. From mid-
2009 onwards this passivity gave way as households began to pay down their liabilities and 
housing prices stabilized. This pattern of recovery is suggestive of a (lagged) procyclical leverage 
cycle. There are many ways one might simulate leverage over this boom-bust cycle, but Stein’s 
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focus is on a more practical tool: an early warning sign measure of financial fragility. Such a 
model is especially important given that, in every asset-price boom, participants defend the 
capital gains as justified by “the fundamentals.” 

Figure 2: Ratio of US Households’ Leverage (Debt to Net Worth) 

 

Quarterly data, period ending. Ratio of total liabilities to net worth for the household and non-profit organizations 
serving household sector. Solid line is the pre-crisis mean leverage ratio (from 1980 Q1 to 2008 Q1). Federal Reserve 
Economic Database (FRED), series TNWBSHNO and TLBSHNO. 

In the recent cycle and during the 1980s US real estate boom, Stein (2003, 2012, chapter 5) shows 
that households’ observed leverage,  , was far above the optimal leverage, , computed in his 
model. Stein defines this difference as 

which he calls an early warning sign (EWS) when Ψt >> 0. The broad applicability and recurrence 
of the EWS prior to many financial crises (see, Stein, 2006, 2012) makes this an attractive 
approach. However, in each empirical application, Stein analyzes only completed boom-bust 
cycles. 
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We break from this practice to analyze the current Canadian housing market and current 
Canadian household balance sheet data.1 Canadian housing prices have grown rapidly over the 
past several years, suffering only a minor retrenchment in the depths of the 2008 financial crisis 
south of the border. We find that, indeed, the EWS ( ) is well above historical norms in 
Canada (section 5). However, the EWS metric indicates only that financial fragility exists; it does 
not allow us predict if, let alone when, a housing crisis might occur. That is, Stein’s approach does 
not include a mechanism – conceptual or empirical – for the onset of a debt crisis. Therefore, 
evidence of financial fragility in Canada offers a cautionary warning to policymakers that must 
be interpreted within the particular economic and regulatory context. 

III. The Stochastic Control Model of Optimal Leverage 

IIIA. Set Up 

The model developed here is an extension of the optimal household leverage model in Stein 
(2003). Stein has refined this model in many subsequent vintages (e.g., Fleming & Stein, 2004; 
Stein, 2006, 2011, 2012), however the 2003 version has some distinct advantages. In more recent 
vintages, agents optimize a concave function of terminal net worth by their choice of leverage. 
Stein (2003) employs a more standard set up of an infinitely-lived agent optimizing consumption 
over time, which we adopt here. Second, the agent chooses both leverage and consumption. 
Finally, in Stein’s older model, capital productivity, speculative price gains and the interest rate 
are random variables. Later versions treat one of these (typically productivity) as a constant or 
deterministic function. Although it adds some empirical complexities, the added realism from 
including all three rates of return as random variables is a welcomed extension. 

The agent’s objective function is 

where 0 < δ < 1 is the pure rate of time preference and U (•) is a well-behaved, twice-differentiable 
function of the hyperbolic absolute risk aversion (HARA) type. The choice variables  ,  are 
consumption and debt normalized by net worth, respectively. The problem is solved subject to 
the stochastic differential equation (12), which represents the evolution of net worth  . 
Importantly, the solution methodology employed maintains the first two moments of the 

                                                           
1 At the time of this writing the latest complete set of data runs through 2013 Q4. 



8 Leverage Cycles in the Household Sector March 2016 

 

stochastic processes in (12) – a crucial difference from typical dynamic optimization models that 
maintain only the first. 

Although equation (1) appears as a typical rational expectations optimization, the constraint is a 
stochastic differential equation (SDE). An analytical solution, therefore, relies on stochastic 
optimal control (SOC) theory (see Fleming & Rishel, 1975). The solution methodology is 
continuous-time dynamic programming (DP). This means that the recursive Hamilton-Jacobi-
Bellman (HJB) equation is defined over infinitesimal time steps dt, which requires the use of a 
backward operator, Au, that limits the centrality of the expectations operator (Chang, 2004, 
chapter 4). 2  In the more common forward-looking, discrete-time models the expectations 
operator is applied directly to the period-ahead value function thereby generating a certainty-
equivalent  DP  equation  in  which  all  random  variables  are  set  to  their  mean  value, typically 
zero.  Dynamic programming in the SOC setting also leads to a deterministic equation (a non-
linear 2nd-order differential one), but it is not certainty-equivalent. In SOC the HJB equation 
retains the (squared) diffusion parameters (see Appendix A).  Moreover,  as  we  show  below,  
the  optimal  control  variable  that  we  seek,  , fluctuates  over  the  particular  realization  path  
of  the  state  variable,  net  worth  Xt. Although the SOC solution implies a steady-state Markov 
equilibrium, this solution is incidental to our focus on households’ optimal leverage ratio that is 
implied by the contemporaneous data. 

The agent’s consumption comes entirely from its current net worth, Xt. Ideally, one would like 
to include labor-market income which could add to net worth or to consumption. However, to 
maintain a tractable analytical solution, we do not incorporate such an extension. This choice is 
further justified by the fact that the present focus is on household balance sheet management to 
which the narrower portfolio approach is more appropriately honed. Therefore, in the present 
model, the evolution of consumption is always limited by the evolution of the state variable, i.e., 
net worth. 

The specific time path of net worth can be modeled by many different specifications, but the basic 
framework must begin with the balance sheet identity 

                                                           
2 The backward operator is a second order partial differential operator. 
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t t t

where Kt denotes total assets (capital), Lt is the agent’s stock of debt and Xt is the book value of 
equity/net worth. The book value of net worth means Xt adjusts such that (2) holds identically. 
The balance sheet equation must also hold identically in terms of its flows, 

t t t

which is simply the total differentiation of (2). Equation (3) says the difference between the 
(instantaneous) change in the value of assets and the value of liabilities is equal to the change in 
net worth,   dXt. 

As stated, the agent controls the evolution of net worth by its choice of leverage, 

೟

೟

೟

೟

The leverage ratio, ft is the key variable of the model. Our goal is to find the value  that 
optimizes (1) in an inherently uncertain environment. This uncertainty is modeled as a set of 
stochastic processes – specifically, controlled diffusions – that propel the evolution of net worth 
forward through time. 

Stein (2012, Chapter 4) recognizes that there is no such thing as a “true” model of financial 
evolutions. A model, therefore, should provide a plausible set of variables and relationships with 
which to study actual economic phenomena. With this in mind we build on the models of Stein 
(2003) and Fleming and Stein (2004). Of these two papers, which lay the foundation for the 
authors’ later work, Stein (2003) is of particular interest since it models three stochastic processes: 
speculative capital gains, capital productivity and the interest rate.3 We recapitulate this model, 
but improve upon it by depicting speculative capital gains as geometric Brownian motion. The 
drift component is treated as a variable positively correlated with net worth. Thus, the expected 
rate of capital gains fluctuates procyclically over the the business cycle. 

Keeping in mind the identities (3) and (4), we begin by defining total capital as the product of its 
physical stock, Nt, and its price, Pt: 

                                                           
3 Since his 2003 paper, all of Stein’s models in this area have used only two stochastic processes, typically 

treating capital productivity as a constant or as deterministically growing. 
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On an analytical level, at least, this specification delineates observed changes in total assets into 
“real capital” changes (dNt) and pure speculative price variation (dPt). Throughout this paper Pt 
and dPt represent the nominal price level and its change. Therefore, capital gains are always 
understood as purely speculative. This distinction is present in all versions of Stein’s model, 
though often less explicitly represented than in (5).4 

Total differentiation of (5) gives the evolution of capital as 

 ೟

೟

where the final equality indicates that investment, It directly increases the volume of capital stock 
at a given price and ೟

೟
 denotes (speculative) capital gains. 

Following the finance literature, capital gains are modeled as geometric Brownian motion: 

೟

೟

Stein (2003) considers the capital gains drift rate to be a constant value, . We loosen this 
assumption by modeling the drift rate as an implicit function of time t, which can become 
negative in a severe downturn. Formally, we consider μt as a positive function of the change in 
total assets: 

   μ’ > 0 

We do not offer a precise functional form of μt since it is unobservable and untestable. In section 
4 μt is operationalized as the smoothed difference between changes in capital’s market value and 
its productivity. 

The final stochastic element comes from the capital productivity variable, bt, which identically 
equals 

                                                           
4 Readers familiar with the Cambridge controversy will be aware of the impossibility of aggregat- ing across 

physical stocks of capital without reference to capital’s price and, hence, capital’s rate of return. However, 
this is not a concern for the narrow forces of the present paper: Because we are focusing on the housing 
market, Nt can be thought of as the number of houses or the total floor area of the stock of houses. Of 
course, in general, caution should be exercised on this point. 
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where Yt denotes output (or value-added). In keeping with Stein (2003), this is a non-differential 
stochastic process with mean β > 0, 

Hence, capital productivity randomy oscillates around β with a standard deviation of . 

Capital productivity process and the debt servicing evolution are connected through the 
macroeconomic identity for flows to and from the agent’s stock of debt 

t t t t t t

where the interest servicing cost Ltrt is observable (see section 4). Equation (9) says that changes 
in interest payments, consumption and investment spending above (below) the change in net 
output, Ytdt, are financed by debt accumulation, dLt > 0 (re- payment, dLt < 0). Further, given 
equation (8) above, Ytdt in (9) can be replaced by 

t t t t b b

Hence 

t t t t t t b b

Finally, all three stochastic process can be brought into a single equation for the evolution of net 
worth. Substituting equation (7) into (6), and (11) into the identity for balance sheet flows, (3), 
yields 

All terms on the righthand side of (12) have been normalized by net worth; hence ೟

೟
 and, 

recall, ೟

೟
 and ೟

೟
. Since the agent consumes only out of net worth, it must maximize 

(1) subject to (12) via an optimal choice of  and  at every point in time. We derive these 
optima below. 

IIIB. Solving the Model 

For tractability the felicity function is operationalized as a homogenous power utility. This 
implies an agent with decreasing absolute risk aversion but constant relative risk aversion. 
Specifically, let 
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with absolute and relative risk aversion coefficients, 

ᇲᇲ

ᇲ

ᇲᇲ

ᇲ

With this specification the agent maximizes the value function 

 
೟ ೟

೟
ം

 

To solve the model we must specify the relationships between the two stochastic terms of the state 
equation, (12). As in Stein (2003) we assume that speculative capital gains and capital productivity 
are independent of one another. Hence, 

To solve (14) subject to (12) we apply the dynamic programming methodology to the 
stochastic optimal control problem (Chang, 2004; Fleming & Rishel, 1975). The Hamilton-
Jacobi-Bellman (HJB) equation is 

  

where u ≡ {c∗, f∗}, are the instantaneous values of consumption and leverage that optimize  (15). 
As before δ is the continuous discount rate. The term Au is the backward operator applied to the 
still-undefined value function V (X). Using Itō’s Lemma, this can be specified as 

Our interest, however, is not the optimized path of the value function – we need only the optimal 
controls that the rational agent should employ. These are (see Appendix A), for consumption: 

భ
ംషభ

where A is an arbitrary contant. And, the core result of the optimal choice leverage is  
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 ೟ ೟
మ

Where  and can be interpreted as the total asset risk. Equation (17) contains some 
readily apparent insights.  First optimal leverage is inversely related to risk.  Second,  is 
increasing in the expected capital gains rate, μt, and the average rate of productivity, β, but 
decreasing in the prevailing interest rate, rt. 

The optimal leverage solution in (17) is neither purely pro- nor counter-cyclical. Indeed,  is 
procyclical insofar as net expected returns on assets (μt + β – rt) increase during an expansion 
given non-increasing risk (Δσ2 ≤ 0).5 This is a crucial result that sets the present model apart from 
typical certain-equivalent approaches. Adrian and Shin (2013) rightly criticize the extirpation of 
procyclical leverage models from macro-financial models. They point out that the near-universal 
application of concave utility functions enforces counter-cyclical leverage patterns. Although we 
have used such a utility function here, we have avoided the preordained, counter- cyclical leverage 
result because: (a) leverage is a control variable, and; (b) the SOC methodology yields time-
varying optimal controls. The SOC feedback controls are “fundamentally different from the 
‘forward looking/certainty equivalent’ models in the economics literature” (Fleming & Stein, 
2004, p. 985). Indeed, as we see in section 4,  does not follow a path typical of forward-looking, 
rational expectations models. The result of the SOC approach is not only more a realistic time 
path of the control variable, but an optimal leverage estimate that can be compared directly with 
actual/observed leverage. 

IV. Empirical Data for Constructing Optimal Leverage 

Quarterly household data is taken from the Bureau of Economic Analysis (BEA), the Federal 
Reserve’s Flow of Funds (FoF) account and Statistics Canada. These data are proxied by 
household assets and effective mortgage interest paid in either country. Obtaining data for 
household’s capital gains is, however, somewhat more complicated. A perennial issue in applying 
optimal decision rules to financial data is separating ‘fundamental changes’ in price from purely 
speculative ones. In the present context this means ೟

೟
 (speculative capital gains) and bt (capital 

productivity) are not independently observed. Rather we are able to view only aggregate price 
changes. Following Stein (2012) we proxy the productivity, or “utility,” of home ownership by 

                                                           
5  In our present investigation procyclical leverage necessarily holds since σ2 is treated as a constant 

parameter throughout. 
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homeowners’ imputed rent.6 Statistics Canada estimates imputed rent by scaling total rent paid 
by the relative number of owner-occupied dwellings, housing size, a quality measure and 
historical ownership trends (see Statistics Canada, 2008). Dividing aggregate imputed rent by the 
stock of residential structures owned by households generates our proxy for the rate of housing 
productivity in Canada, bt. The sample mean of bt is the value of β. The BEA calculates the 
imputed rent paid by US owner-occupied households. However, the BEA reports imputed rent 
only as an annual total and with a delay. American owner-occupied households’ 2012 imputed 
rent is the most recent available datum.7 We assume payments are spread evenly over the year’s 
quarters. This implies a dollar-valued flow of the utility of home ownership, which is then turned 
into a rate of return by dividing by the quarterly total stock of owner-occupied real estate, 
available quarterly in the FoF accounts. This stock measure, unfortunately, is for the household 
and NPO sector. This imperfect data set generates our quarterly bt figure for the United States. 
The sample mean is β.8 

In section 3 we argued that the expected capital gains rate, μt should be a positive function of total 
asset value increases. We operationalize this as the smoothed trend difference between observed 
housing index growth and its productivity rate, bt. This follows directly from the treatment of 
dPt/Pt as pure speculative capital gains that, nevertheless, feed into the agent’s net worth. Total 
price changes for Canada are taken from Teranet’s Housing Price Index (HPI). The US housing 
price index (HPI) is taken from the original 10-city Case-Shiller index with January 2000 = 100. 
The rough difference between the percentage growth rate of HPI and bt is smoothed by the 
Hodrick-Prescott filter using a multiplier value λ = 14400. That is 

The filtered trend is then treated as the variable capital gains trend, μt.9 For both countries this 
gives a variable but highly smoothed expected capital gains   trend. 

                                                           
6 In national income accounting owner-occupied houses are treated as unincorporated firms pro- viding a 

service (living space) to the tenants-cum-owners. 
7 The 2012 data was released in February 2014. See BEA NIPA, Table 7.12 line 153. 
8 Note that the housing stock values used by the Fed and Statistics Canada are market values. This is 

appropriate since the rate of return on housing ownership would fall if, all else equal, a property’s value 
increased. Secondly, both the US and Canadian housing stock data is taken from the household sectors’ 
balance sheet assets meaning that there is no danger of counting commercially rented spaces. 

9 We thank Willi Semmler for suggesting this empirical approach. 
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Finally we must estimate . One method of estimation is to sum the sample variances of 
bt and the cyclical component of the HP filtered series ೟

೟
. However, this presumes our 

assumption that  is correct and places additional onus on the validity of 
the HP filter.  We therefore rely on the (directly observed) sample variances of the housing price 

indices, ೟

೟
. This is admissible because bt and dPt/Pt are the only constitutive components 

of housing price changes. Moreover, if there is some correlation between bt dt and dPt/Pt dt then 
the denominator in (17) would contain this additional information, which would be omitted in 
the former estimate. That said, both approaches yield estimates on the same order of magnitude 
and, therefore, produce little difference in the calculation of optimal leverage.10 

Table 1 presents the summary statistics of the variables used to construct  and the observed 
level of household leverage for Canada and the United States. Note that Canadian housing price 
data is available only from 1999 onwards, hence there are only 56 observations for ೟

೟
 and μt. 

Data for imputed rent, housing stock and paid interest needed to construct bt and rt are available 
from 1990 (no. 96). Table 1 therefore  presents  more  information  than  can  be  used  in  the  
construction of Canada’s , for which all data is take from 2000 Q1 onwards.11 In constructing 

 for Canada all series begin with 2000 Q1. Housing price data also limits the US series, but, as 
the 10-city Case-Shiller index is available from 1987, all US figures in Table 1 are already 
circumscribed to start in 1988 Q1.12 

  

                                                           
10 For both Canadian and US data the variance of housing price growth that we use is greater than the 

summation approach. For Canada this is ௕
ଶ

௣
ଶ  0.00759 versus 00.409. This suggests that 

ሺ௣,௧ሻ ௕,௧  does not strictly hold. 
11 Teranet’s 11-city housing price index begins in 1999 Q1, meaning year-on-year changes can begin only 

in the second year of the available data. 
12 See footnote 11. 
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Table 1: Summary Statistics for Data Series 
Variable No. Obs. Arithmetic 

Mean 
Variance Minimum Maximum 

Canada      
ft 96 0.2094 0.0004 0.1807 0.2549 

 56 0.0610 0.0015 -0.0602 0.1316 

bt 96 0.0255 0.0000092 0.0209 0.0301 
rt 96 0.0176 0.0000425 0.0087 0.0308 
μt 56 0.0375 0.0001 0.0110 0.0510 

United 
States 

     

ft 104 0.1850 0.0006 0.1546 0.2537 

 104 0.0364 0.0076 0.1546 0.2537 

bt 100 0.0163 0.0000039 0.012 0.0196 
rt 100 0.0161 0.0000181 0.0094 0.0245 

μt 100 0.0169 0.0019 -0.0744 0.0871 

 

V. Interpreting Optimal Leverage and the Early Warning Sign 

Figure 3 plots the optimal and actual leverage ratios for Canada (Fig. 3a) and the United States 
(Fig.  3b). The optimal leverage ratio is computed by equation (17) using the empirical estimates 
described in section 4. As previously noted, the low variance measures produce raw  ratios that 
are two orders of magnitude too large; we therefore scale both countries’ ratios down by 102. Even 
with this scaling, the two figures show that our constructed measure of  is not robust. Using 
the level estimate of  produces an EWS measure as a difference of ratios for which there is no 
singular, let alone correct, interpretation of the magnitude of Ψt. Even if our optimal leverage 
measures were robust, the level measure of the EWS would still face interpretative ambiguity. 
Therefore, we must follow Stein’s approach and compare the normalized values of ft and . 
Normalization centers the data at zero and, more importantly, eliminates the estimated 
parameters (e.g., σ2) from the optimal leverage estimate. 

In Figure 4 all US variables are normalized by their pre-crisis norms. Specifically, 
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Figure 3: Optimal versus Actual Household Leverage 

 

Author’s calculations. Risk aversion parameter are γ = 0.9 for Canada and the United States. See Table B.2 for 
details. 

where the  and σf are the sample mean and standard deviation through 2008 Q1. This cut point 
is chosen since fragility had, in retrospect, clearly built up to very high levels by early 2008, but 
the crashes of Bear Stearns in March and Lehman Brothers in September could not have yet 
spilled over into the housing sector. That is, we have normalized US leverage ratios according to 
their ‘crash-free’ histories. 

Figure 4: United States Normalized Leverage and EWS 
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Author’s calculations. See Table B.2 for details. 

Figure 4a plots the series produced by (18) and (19) for the United States. As already shown, US 
household leverage reached unprecedented heights in 2009 Q1, from which it has rapidly fallen 
to its pre-crisis average. Further, it is now clear that the (normalized) optimal leverage measure 
began a steady decline several years prior to the jump in observed leverage. Indeed, since 2006 
Q1 American households’ optimal leverage has been below its historic, pre-crisis mean. More 
tellingly, the US optimal leverage figure fell very rapidly, decreasing by 3 standard deviations over 
four years (from approximately +1.5 2004 Q1 to -1.5 in 2007 Q4). Falling optimal leverage has, 
of course, limited the retrenchment of the US EWS. In Figure 4b N (Ψt) also peaks in 2009 Q1, at 
+5.6 standard deviations above the pre-crisis average, but has since fallen to only +3.7 s.d. by 2012 
Q4 – still well above historic norms. This normalized EWS indicates, we think correctly, that US 
households continue to be in a precarious financial state that is only slowly improving. Yet, the 
most important result from the N (Ψt) series is that it was an early indicator of financial fragility. 
The EWS was 2 standard deviations above its historical norm in the first half of 2007, before any 
widespread acknowledgement of financial fragility, let alone an incipient crisis. Thus, with data 
available by the beginning of 2008, the normalized US early warning sign clearly evidences a high 
degree of stress as of 2007 Q2, if not sooner. If applied contemporaneously to the US housing 
crisis, the normalized EWS would have provided an unambiguous interpretation of financial 
fragility in the household sector. 
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Figure 5: Canada’s Normalized Actual and Optimal Leverage 

 

Author’s calculations. See Table B.2 for details. 

As Canadian households have not experienced a crisis we use the entire data set (i.e., through 
2013 Q4) to normalize actual and optimal leverage by (18) and (19). The normalize leverage series 
and EWS data for Canada are plotted, respectively, in Figures 5 and 6. Although Canadian 
household leverage hit the same level as in the US (≈ 25%), Figure 5 includes this maximum point 
in its normalization. Therefore, N (ft) peaks at +1.67 standard deviations in 2009 Q1 versus the 
contemporaneous +6.3 s.d. in the US. Even if one normalizes US leverage over the entire data 
series this maximum is still an incredible +2.77 standard deviations above the mean. Rather than 
mimicking the US 2008 boom/bust cycle, the normalized Canadian leverage series more closely 
aligns with the US N (ft) data from 2000 to 2007. During this period US household leverage 
jumped from a low point in 2000 Q1 to approximately +1.5 s.d. above its average around which 
it hovered for the next 5 years. The Canadian N (ft) similarly jumped in 2008 from a lower level, 
and has been hovering between +1 and +1.5 standard deviations. However, if the downward trend 
since 2012 Q4 continues then Canadian households may safely reduce their exposure. 
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Figure 6: Canada’s Early Warning Sign 

 

Author’s calculations. See Table B.2 for details. 

However, the second similarity to the pre-crisis US data is the steep decline in the optimal 
leverage measure. Canada’s fall in optimal leverage has been somewhat less rapid than in the US. 
From 2009 Q1 to 2013 Q4 optimal leverage fell by over 2 standard deviations, from +0.22 to -
2.15. Since the decline in optimal leverage continues unabated, the Canadian EWS has continued 
to rise even as actual leverage has begun to decline (see Fig. 6). The resulting EWS pattern for 
Canada is quite distinct from that of the United States.  After an initial rapid build during 2008 
to 1.44 s.d. in 2009 Q1, the Canadian EWS remained fairly constant through to 2010 Q1 at which 
point it began to rise again. The N (Ψt) peaked at 2.92 s.d. in 2013 Q3 before scaling back slightly 
to 2.83 in the next quarter (which is nevertheless the second highest EWS measure for Canada). 
Given the success of the normalized EWS in leading the US housing crisis, the the persistent 
elevation in Canada’s EWS does not bode well for the country’s households. 

VI. Implications and Further Research 

After developing and amending Stein’s optimal leverage model, we applied its Early Warning 
Sign (EWS) to the completed US housing boom-bust cycle of the 2000s and to the still booming 
Canadian housing market. Level estimates of the EWS were not robust and so we followed Stein’s 
method of normalizing the observed and optimal leverage measures.  The optimal leverage trends 
for both countries (normalized by the pre-boom sample data) revealed some similar patterns. For 
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many years US and Canadian households evidenced only small deviations from their historic 
EWS averages only to be followed by a sustained rises above the norms.13 In the US, the elevated 
EWS, which began in 2002, rapidly rose over 2006-2007, and was then followed by the infamous 
crash in 2008 (see Fig. 4b). In Canada, the elevated EWS has been sustained since 2011 and has 
been slowly creeping up through 2013. From this level any retrenchment would be far less than 
that experienced in the US, but it would nevertheless represent a serious correction. Our 
conclusion, therefore, is that Canadian households continue to be in a precarious financial 
position. 
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Appendix A Stochastic Optimal Control Solution 

The balance sheet identity for the flow of assets, liabilities and net worth is 

t t t	

The total value of assets (capital) grows according to 

 ೟ ೟

೟
 

and liabilities according to 

t t t t t t

where capital generates value-added output Yt, by 
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Capital’s productivity, bt, is a random process with mean . It is defined by 

t p p	

Speculative price changes grow according to geometric Brownian motion 

 ೟

೟

To solve for the optimal control functions  and  using the above equations first substitute 
(A.6) into (A.2) and (A.5) into (A.3), and then equations (A.2) and (A.3) into (A.1). Thus, 

Equivalently 

Rearranging this becomes 

 

where ೟

೟
, ೟

೟
 and ೟

೟
. 

Now setup the objective function as a continuous-time HARA function 

 
೟ ೟

Which is subject to (A.7). The dynamic programming equation uses Itō’s Lemma in the 
continuous-time Bellman equation which has the generic form 

 

where , are the instantaneous values of consumption and leverage chosen to optimize 
(A.9).  is the backward stochastic operator applied to the undefined value function V(X). For 
an autonomous, scalar diffusions, i.e. (A.7), this is defined as (Fleming & Rishel, 1975, Chapters 
V and VI). 

 
మ

మ

where y is the state variable, v is the control, and s is the initial time s < t, and the SDE has the 
generic form dy = f(s,y,v)dt + σ(s,y,v)dWt. 
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Applied to our particular value function the backward operator may be written more explicitly 
as 

Substituting  and  into (A.9) gives 

 

 

where δV(X) has been removed from the maximum operator because it is independent of controls. 
Clearly equation (A.11) is a second-order, nonlinear ordinary differential equation. Therefore, 
by the method of undetermined coefficients we may suppose that  solves the ODE 

given the arbitrary constant A. Then, 

  

Solving for the intertemporal maximum C* by the first-order condition of the DP maximization 

೉
ᇲ

భ
ംషభ

భ
భషം

Similarly to solve for f * we find 

Now differentiate with respect to fs and set equal to zero: 



26 Leverage Cycles in the Household Sector March 2016 

 

□ 
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Appendix B List of Variables 

Table B.1: Optimal Leverage Model Variables 

Name Variable Notes 
Xt Net Worth Book value of equity, defined by balance 

sheet identity Kt = Xt + Lt. State variable. 
Lt Debt Total stock of loans held by the agent. 
Nt Capital Stock Physical amount of capital. 
Pt Capital Price Market value of capital (proportional 

changes are capital gains). 
Kt Total Assets Capital made up of debt and equity. Also 

the monetary value of physical capital: Kt = 
PtNt. 

 Leverage Ratio Control variable. Capital/Equity ratio, 
೟

೟
. 

 Consumption Ratio Control Variable. Ratio of consumption to 
net worth. 

 Speculative Capital Gains Geometric Brownian motion with variable 
drift, ೟

೟
. 

rt Interest Rate Ornstein-Uhlenbeck mean-reverting 
stochastic process, 

 (the Vasicek model). 
bt Capital Productivity Stochastic non-differential process, 

. 
Yt Net Value Added Akin to GDP or total output, Yt = btKt 

where the productivity term is a stochastic 
process. 
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Table B.2: Parameter Values for Optimal Leverage Estimate 

 

Variable Description Value 
  Canada USA 
Calibrated Parameters   

 Mean productivity rate 0.0235 0.0163 
 Mean expected speculative capital gains 0.0375 0.0169 
 Mean effective mortgage interest rate 0.0129 0.0161 
 Productivity diffusion coefficient 0.0000055 0.0000039 
 Capital gains diffusion coefficient (variance of cyclical 

trend from HP filter on dHPIt/HPIt – bt) 
0.0012 0.0041 

 Interest rate diffusion coefficient 0.0000077 0.0000138 
 Risk aversion (given) 0.9 0.9 
 Total risk value var(dHPIt/HPIt) 0.0015 0.0072 
 Mean optimal leverage 0.3043 0.0137 


